

CARBON ES REPORT

ES expert

Kevin Black

Porto

Harmonized methodology

Inputs Scenario Standing , Harvey volume Increment Mortality Year Assortment Harvest residue

Parameters Biomass, Exp F, dens. Root ratio Deadwood, turnover, inputs half life, fragmentation HWP allocations Assortment to energy or HWP (scenario dependent)

Increment

Methodological issues?

- Organic soils, apply drainage EF ca. 1 t C/ha/yr (Ireland, Lithuania?, Sweden?)
- Some CSAs used default parameters for HWP-energy substitution
- Fires, can we apply GHG emissions based on probability of fires events (area)?
- Some CSAs have no climate impact of C seq.

Age class shift

Left (younger forest)

- Decline in productivity
- Decreased sink

Right (as forests mature)

- Increase up to max incr.
- Increased sink up to max then decline

Age class legacy is the main consideration in new EU LULUCF regulation (FRL)

Allocation between HWP and energy

- Higher sawlog output and allocation to HWP or product substitution results in higher C sink
- Pulpwood to energy or paper results in a lower sink

ALTERFOR

Drivers and trends

FOREST

- High correlation between forest sink and productivity and level of harvest
- Productivity driven by numerous factors, age class shift, climate change (positive and negative)- higher impact under different global frame scenarios
- Reference scenario generally had the smallest climate change impact

HWP and energy or product substitution

- Drivers ate level of harvest, assortment output, allocation to end product
- Generally higher C seq. potential under Reference (low energy allocation)
- Incentive to higher allocation to long term product or product substitution

Overall

- Total C seq potential for CSAs highest under:
 - Reference scenario (4 out of 9 CSAs),
 - EU Bioenergy and Global Bioenergy (1/9 CSA)
 - Very small difference between scenarios (3/9 CSAs)

ALTERFOR

Conclusion

- Harmonised approach allowed good comparison across CSAs (thank you Peter)
- Always room for improvement: e.g. Should include emissions for organic soils and fires
- Drivers of C seq under different scenarios generally well characterised
- Findings such as age class shift effects (Böttcher et al., 2008) and allocation or displacement of harvest towards energy production (Stare and O Connor, 2010; Smyth et al., 2016) consistent with literature
- High relevance to the EU policy and Paris agreement (COP21)
 - EU LULUCF regulation (FRL) 2018
 - EU forest strategy 2013
 - EU energy directive 2012